Overview of the SPMRL 2013 Shared Task: A Cross-Framework Evaluation of Parsing Morphologically Rich Languages

نویسندگان

  • Djamé Seddah
  • Reut Tsarfaty
  • Sandra Kübler
  • Marie Candito
  • Jinho D. Choi
  • Richárd Farkas
  • Jennifer Foster
  • Iakes Goenaga
  • Koldo Gojenola
  • Yoav Goldberg
  • Spence Green
  • Nizar Habash
  • Marco Kuhlmann
  • Wolfgang Maier
  • Joakim Nivre
  • Adam Przepiórkowski
  • Ryan Roth
  • Wolfgang Seeker
  • Yannick Versley
  • Veronika Vincze
  • Marcin Wolinski
  • Alina Wróblewska
  • Éric Villemonte de la Clergerie
چکیده

This paper reports on the first shared task on statistical parsing of morphologically rich languages (MRLs). The task features data sets from nine languages, each available both in constituency and dependency annotation. We report on the preparation of the data sets, on the proposed parsing scenarios, and on the evaluation metrics for parsing MRLs given different representation types. We present and analyze parsing results obtained by the task participants, and then provide an analysis and comparison of the parsers across languages and frameworks, reported for gold input as well as more realistic parsing scenarios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing the SPMRL 2014 Shared Task on Parsing Morphologically-rich Languages

This first joint meeting on Statistical Parsing of Morphologically Rich Languages and Syntactic Analysis of Non-Canonical English (SPMRL-SANCL) featured a shared task on statistical parsing of morphologically rich languages (SPMRL). The goal of the shared task is to allow to train and test different participating systems on comparable data sets, thus providing an objective measure of comparison...

متن کامل

Effective Morphological Feature Selection with MaltOptimizer at the SPMRL 2013 Shared Task

The inclusion of morphological features provides very useful information that helps to enhance the results when parsing morphologically rich languages. MaltOptimizer is a tool, that given a data set, searches for the optimal parameters, parsing algorithm and optimal feature set achieving the best results that it can find for parsers trained with MaltParser. In this paper, we present an extensio...

متن کامل

SPMRL'13 Shared Task System: The CADIM Arabic Dependency Parser

We describe the submission from the Columbia Arabic & Dialect Modeling group (CADIM) for the Shared Task at the Fourth Workshop on Statistical Parsing of Morphologically Rich Languages (SPMRL’2013). We participate in the Arabic Dependency parsing task for predicted POS tags and features. Our system is based on Marton et al. (2013).

متن کامل

The AI-KU System at the SPMRL 2013 Shared Task : Unsupervised Features for Dependency Parsing

We propose the use of the word categories and embeddings induced from raw text as auxiliary features in dependency parsing. To induce word features, we make use of contextual, morphologic and orthographic properties of the words. To exploit the contextual information, we make use of substitute words, the most likely substitutes for target words, generated by using a statistical language model. ...

متن کامل

Erratum: "Exploring Compositional Architectures and Word Vector Representations for Prepositional Phrase Attachment"

Correction for the list of authors in the refer-ence (Seddah et al., 2013).Correction for the list of authors in the refer-ence (Seddah et al., 2013). ReferencesDjamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Can-dito, Jinho D. Choi, Richárd Farkas, Jennifer Fos-ter, Iakes Goenaga, Koldo Gojenola Galletebeitia,Yoav Goldberg, Spence Green, Nizar Habash, Marco<lb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013